尼克酰胺酶法再生系统及其主要耦联酶系在药物合成中的应用Application of nicotinamide enzymatic regeneration system and its main coupling enzyme system in pharmaceutical synthesis
张文鹤,秦斌,游松
ZHANG Wenhe,QIN Bin,YOU Song
摘要(Abstract):
目的探究尼克酰胺酶法再生系统及其主要耦联酶系在药物合成中的应用。方法查阅近10年涉及尼克酰胺酶法再生系统参与生物催化法合成药物的相关文献,研究尼克酰胺酶法再生系统的酶系及相关耦联酶系在药物合成中的应用,以及优化再生系统的有效方法。结果尼克酰胺辅酶再生系统是利用生物催化实现药物合成的重要环节,要综合考虑反应参与的酶系、反应体系的诸多因素,使辅酶高效再生。结论酶法再生系统将有利于昂贵的尼克酰胺辅酶有效再生,使生物催化反应顺利进行,为手性化合物的合成提供新思路和新方法。
Objective To investigate the application of nicotinamide enzymatic regeneration system and its main coupling enzyme system in pharmaceutical synthesis. Methods The literatures that refer to the biocatalysic reactions associated with nicotinamide enzymatic regeneration in pharmaceutical synthesis were investigated. The emzymes which can regenerate the nicotinamide coenzymes,their coupling enzyme systems,and some methods to optimize nicotinamide enzymatic regeneration system were researched. Results Nicotinamide enzymatic regeneration system is an important part of biocatalysis in pharmaceutical synthesis.It is necessary to consider the factors involved in the enzyme and reaction system and make the regeneration system efficiently. Conclusion The nicotinamide enzymatic regeneration system will be beneficial. It can make the biocatalytic reaction proceed smoothly,and provide newideas and means for the synthesis of chiral compounds.
关键词(KeyWords):
尼克酰胺辅酶再生;生物催化;药物中间体;手性化合物
nicotinamide coenzyme regeneration;biocatalysis;pharmaceutical intermediate;chiral compound
基金项目(Foundation): 国家自然科学基金资助项目(81602993)
作者(Author):
张文鹤,秦斌,游松
ZHANG Wenhe,QIN Bin,YOU Song
DOI: 10.14066/j.cnki.cn21-1349/r.2018.07.014
参考文献(References):
- [1]BOND-WATTS B B,BELLEROSE R J,CHANG M C Y.Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways[J].Nature Chemical Biology,2011,7(4):222.
- [2]GRONENBERG L S,MARCHESCHI R J,LIAO J C.Next generation biofuel engineering in prokaryotes[J].Current Opinion in Chemical Biology,2013,17(3):462-471.
- [3]LEE J W,NA D,PARK J M,et al.Systems metabolic engineering of microorganisms for natural and non-natural chemicals[J].Nature Chemical Biology,2012,8(6):536-546.
- [4]DICOSIMO R,MCAULIFFE J,POULOSE A J,et al.Industrial use of immobilized enzymes[J].Chemical Society Reviews,2013,42(15):6437-6474.
- [5]NESTL B M,NEBEL B A,HAUER B.Recent progress in industrial biocatalysis[J].Current Opinion in Chemical Biology,2011,15(2):187-193.
- [6]SANTACOLOMA P A,SIN G,GERNAEY K V,et al.Multienzyme-catalyzed processes:next-generation biocatalysis[J].Organic Process Research&Development,2010,15(1):203-212.
- [7]WOHLGEMUTH R.Biocatalysis-key to sustainable industrial chemistry[J].Current Opinion In Biotechnology,2010,21(6):713-724.
- [8]CYBULSKI A,MOULIJN J A,STANKIEWICZ A,et al.Novel concepts in catalysis and chemical reactors:improving the efficiency for the future[M].USA:John Wiley&Sons,2011:163-188.
- [9]PADDON C J,WESTFALL P J,PITERA D J,et al.High-level semi-synthetic production of the potent antimalarial artemisinin[J].Nature,2013,496(7446):528-532.
- [10]KATZBERG M,SKORUPA-PARACHIN N,GORWAGRAUSLUND M F,et al.Engineering cofactor preference of ketone reducing biocatalysts:a mutagenesis study on aγ-diketone reductase from the yeast Saccharomyces cerevisiae serving as an example[J].International Journal of Molecular Sciences,2010,11(4):1735-1758.
- [11]JIANG W,LIN P,YANG R N,et al.Identification of catalysis,substrate,and coenzyme binding sites and improvement catalytic efficiency of formate dehydrogenase from Candida boidinii[J].Applied Microbiology and Biotechnology,2016,100(19):8425-8437.
- [12]TISHKOV V I,GONCHARENKO K V,ALEKSEEVA A A,et al.Role of a Structurally equivalent phenylalanine residue in catalysis and thermal stability of formate dehydrogenases from different sources[J].Biochemistry(Moscow),2015,80(13):1690-1700.
- [13]ZHOU X T,ZHANG R Z,XU Y,et al.Coupled(R)-carbonyl reductase and glucose dehydrogenase catalyzes(R)-1-phenyl-1,2-ethanediol biosynthesis with excellent stereochemical selectivity[J].Process Biochimie,2015,50(11):1807-1813.
- [14]SAMUEL N,BAO T,ZHANG X,et al.Optimized whole cell biocatalyst from acetoin to 2,3-butanediol through coexpression of acetoin reductase with NADH regeneration systems in engineered Bacillus subtilis[J].Journal of Chemical Technology and Biotechnology,2017,92(9):2477-2487.
- [15]SˇALIC'A,IVANKOVI C'M,FERK E,et al.ADH based NAD+regeneration in a microreactor[J].Journal of Chemical Technology and Biotechnology,2013,88(9):1721-1729.
- [16]BEYER N,KULIG J K,BARTSCH A,et al.P450BM3fused to phosphite dehydrogenase allows phosphitedriven selective oxidations[J].Applied Microbiology and Biotechnology,2016:1-13.
- [17]REHN G,PEDERSEN A T,WOODLEY J M.Application of NAD(P)H oxidase for cofactor regeneration in dehydrogenase catalyzed oxidations[J].Journal of Molecular Catalysis B:Enzymatic,2016,134:331-339.
- [18]GENG F,MA C W,ZENG A P.Reengineering substrate specificity of E.coli glutamate dehydrogenase using a position-based prediction method[J].Biotechnology Letters,2017,39(4):599-605.
- [19]REHN G,PEDERSEN A T,WOODLEY J M.Application of NAD(P)H oxidase for cofactor regeneration in dehydrogenase catalyzed oxidations[J].Journal of Molecular Catalysis B:Enzymatic,2016,134:331-339.
- [20]QIAN G J,CHEN C P,ZHOU R,et al.A thermostable S-adenosylhomocysteine hydrolase from Thermotoga maritima:Properties and its application on S-adenosylhomocysteine production with enzymatic cofactor regeneration[J].Enzyme and Microbial Technology,2014,64:33-37.
- [21]CHEN Y,XU Y,CHEN J B.A Study and Application of Biocatalytic Synthesis of(S)-N-Boc-3-hydroxypiperidine[C].Les Ulis:EDP Sciences,2015:22.
- [22]RICHTER N,SIMON R C,KROUTIL W,et al.Synthesis of pharmaceutically relevant 17-α-amino steroids using anω-transaminase[J].Chemical Communications,2014,50(46):6098-6100.
- [23]HOLLMANN F,ARENDS I W C E,BUEHLER K,et al.Enzyme-mediated oxidations for the chemist[J].Green Chemistry,2011,13(2):226-265.
- [24]HAJJI C,ROLLER S,BEIGI M,et al.Polyglycerol-supported chromium-salen as a high-loading dendritic catalyst for stereoselective diels-alder reactions[J].Advanced Synthesis&Catalysis,2006,348(12/13):1760-1771.
- [25]LIESE A,KARSTEN S,WANDREY C,et al.Industrial biotransformations[M].USA:John Wiley&Sons,2006:3-27.
- [26]MARTíNKOVáL,RUCKáL,NESˇVERA J,et al.Recent advances and challenges in the heterologous production of microbial nitrilases for biocatalytic applications[J].World Journal of Microbiology and Biotechnology,2017,33(1):8.
- [27]TACIAS-PASCACIO V G,VIRGEN-ORTíZ J J,JIMéNEZ-PéREZ M,et al.Evaluation of different lipase biocatalysts in the production of biodiesel from used cooking oil:Critical role of the immobilization support[J].Fuel,2017,200:1-10.
- [28]KNAUS T,MUTTI F G,HUMPHREYS L D,et al.Systematic methodology for the development of biocatalytic hydrogen-borrowing cascades:Application to the synthesis of chiralα-substituted carboxylic acids fromα-substitutedα,β-unsaturated aldehydes[J].Organic&Biomolecular Chemistry,2015,13(1):223-233.
- [29]ZHAO F J,PEI X Q,REN Z Q,et al.Rapid asymmetric reduction of ethyl 4-chloro-3-oxobutanoate using a thermostabilized mutant of ketoreductase Ch KRED20[J].Applied Microbiology and Biotechnology,2016,100(8):3567-3575.
- [30]VANBERKEL W J H,KAMERBEEK N M,FRAAIJE M W.Flavoprotein monooxygenases,a diverse class of oxidative biocatalysts[J].Journal of Biotechnology,2006,124(4):670-689.
- [31]MJGILLAM E,A HAYES M.The evolution of cytochrome P450 enzymes as biocatalysts in drug discovery and development[J].Current Topics in Medicinal Chemistry,2013,13(18):2254-2280.
- [32]MUNRO A W,GIRVAN H M,MASON A E,et al.What makes a P450 tick?[J].Trends in Biochemical Sciences,2013,38(3):140-150.
- [33]MüLLER C A,WEINGARTNER A M,DENNIG A,et al.A whole cell biocatalyst for double oxidation of cyclooctane[J].Journal of Industrial Microbiology&Biotechnology,2016,43(12):1641-1646.
- [34]PONGTHARANGKUL T,CHUEKITKUMCHORN P,SUWANAMPA N,et al.Kinetic properties and stability of glucose dehydrogenase from Bacillus amyloliquefaciens SB5 and its potential for cofactor regeneration[J].Amb Express,2015,5(1):68.
- [35]KILLE S,ZILLY F E,ACEVEDO J P,et al.Regio-and stereoselectivity of P450-catalysed hydroxylation of steroids controlled by laboratory evolution[J].Nature Chemistry,2011,3(9):738-743.
- [36]JOHANNES T W,ZHAO H.Directed evolution of enzymes and biosynthetic pathways[J].Current Opinion in Microbiology,2006,9(3):261-267.
- [37]TURNER N J.Directed evolution drives the next generation of biocatalysts[J].Nature Chemical Biology,2009,5(8):567-573.
- [38]JCKEL C,KAST P,HILVERT D.Protein design by directed evolution[J].Annu Rev Biophys,2008,37:153-173.
- [39]KNUDSEN J D,HGGLF C,WEBER N,et al.Increased availability of NADH in metabolically engineered baker's yeast improves transaminase-oxidoreductase coupled asymmetric whole-cell bioconversion[J].Microbial Cell Factories,2016,15(1):37.
- [40]SIVAPRAGASAM M,MONIRUZZAMAN M,GOTO M.Recent advances in exploiting ionic liquids for biomolecules:Solubility,stability and applications[J].Biotechnology Journal,2016,11(8):1000-1013.
- [41]JAKOBLINNERT A,ROTHER D.A two-step biocatalytic cascade in micro-aqueous medium:using whole cells to obtain high concentrations of a vicinal diol[J].Green Chemistry,2014,16(7):3472-3482.
- [42]JAKOBLINNERT A,MLADENOV R,PAUL A,et al.Asymmetric reduction of ketones with recombinant E.coli whole cells in neat substrates[J].Chemical Communications,2011,47(44):12230-12232.
- [43]BRUTIGAM S,DENNEWALD D,SCHüRMANN M,et al.Whole-cell biocatalysis:Evaluation of new hydrophobic ionic liquids for efficient asymmetric reduction of prochiral ketones[J].Enzyme and Microbial Technology,2009,45(4):310-316.
- [44]CAHN J K B,WERLANG C A,BAUMSCHLAGER A,et al.A general tool for engineering the NAD/NADP cofactor preference of oxidoreductases[J].ACS Synthetic Biology,2016,6(2),326-333.
- [45]WHEELDON I,MINTEER S D,BANTA S,et al.Substrate channelling as an approach to cascade reactions[J].Nature Chemistry,2016,8(4):299-309.
- [46]KARIM A S,JEWETT M C.A cell-free framework for rapid biosynthetic pathway prototyping and enzyme discovery[J].Metabolic Engineering,2016,36:116-126.
- [47]ROGERS J K,TAYLOR N D,CHURCH G M.Biosensor-based engineering of biosynthetic pathways[J].Current Opinion in Biotechnology,2016,42:84-91.
- [48]OKAMOTO Y,KOHLER V,PAUL C E,et al.Efficient in situ regeneration of NADH mimics by an artificial metalloenzyme[J].ACS Catalysis,2016,6(6):3553-3557.
- [49]HEINTZ S,MITIC A,RINGBORG R H,et al.A microfluidic toolbox for the development of in-situ product removal strategies in biocatalysis[J].Journal of Flow Chemistry,2016,6(1):18-26.
- [50]CHAKRABORTY S,RUSLI H,NATH A,et al.Immobilized biocatalytic process development and potential application in membrane separation:a review[J].Critical Reviews in Biotechnology,2016,36(1):43-58.